

AFRL-IF-RS-TR-2006-153
Final Technical Report
May 2006

SOFTWARE INFRASTRUCTURE TO SUPPORT DSAP
(DYNAMIC SITUATIONAL AWARENESS AND
PREDICTION) CAPABILITIES

RAM Laboratories, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2006-153 has been reviewed and is approved for publication.

APPROVED: /s/

DAWN A. TREVISANI
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES W. CUSACK
Chief, Information Systems Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MAY 2006

3. REPORT TYPE AND DATES COVERED
Final Jun 2003 – Dec 2005

4. TITLE AND SUBTITLE
SOFTWARE INFRASTRUCTURE TO SUPPORT DSAP (DYNAMIC
SITUATIONAL AWARENESS AND PREDICTION) CAPABILITIES

6. AUTHOR(S)
Robert McGraw

5. FUNDING NUMBERS
C - F30602-03-C-0112
PE - 65702F
PR - 459S
TA - MA
WU - 03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
RAM Laboratories, Inc.
10525 Vista Sorrento Parkway, Suite 220
San Diego California 92121

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFSB
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2006-153

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Dawn A. Trevisani/IFSB/(315) 330-3657 Dawn.Trevisani @rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Today’s C4I systems will be required to support faster-than-real-time predictive simulation that can determine possible
outcomes by re-calibrating with real-time sensor data or extracted knowledge in real-time. This capability is known as a
Dynamic Situation Assessment and Predication (DSAP) capability. The work under this contract involved developing a
software infrastructure to support the implementation of a DSAP capability for decision aids. Specifically, this effort
focused on developing enhancements for existing and evolving software frameworks by supporting capabilities that
allow objects to be dynamically created, deleted and reconfigured, that allow simulations to be calibrated with live data
feeds to provide state estimation, and that allow simulations to reduce overheads while supporting these mechanisms in
order to continue to run in real-time. This effort examined the software framework used in support of the Joint Semi-
Automated Forces (JSAF) program as a testbed for promoting this DSAP capability, implement these infrastructure
improvements and integrate the technology with C4I systems.

15. NUMBER OF PAGES
50

14. SUBJECT TERMS
Dynamic Situation Assessment and Predication, DSAP, software infrastructure, predictive
simulation, operationally focused simulation, C2 Decision Support, software frameworks,
decision aid technologies.

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

1.0 Introduction... 1

1.1 Significance to the Air Force .. 1

1.1.1 Infrastructure Enhancements and Functionality Required for DSAP..................... 1

SOFTWARE INFRASTRUCTURE TECHNOLOGY .. 2

CAPABILITY... 2

1.1.1.1 Persistence and Checkpoint/Restart.. 2

1.1.1.2 Dynamic Object Creation/Deletion... 2

1.1.1.3 Rollback/Rollforward/Lazy Cancellation ... 2

1.1.1.4 Event Reparation... 3

1.1.1.5 Multiple Replications.. 3

1.1.1.6 Calibration with Live Data Feeds ... 3

1.1.1.7 Summary of Required Infrastructure Capabilities .. 3

2.0 DSAP Concept of Operations and Architecture ... 4

2.1 DSAP Architecture ... 5

2.1.1 Multi Replication Framework Operation.. 6

2.1.1.1 Network Communications .. 6

2.1.1.2 Client Server ORB (Object Request Broker) Infrastructure 7

2.1.1.2.1 ACE + TAO .. 7

2.1.1.2.2 SPEEDES/CCSE Client Server Functionality .. 7

2.1.1.2.3 RAM Object Request Broker.. 8

2.1.1.2.4 Selection of ORB Technology.. 8

2.1.1.3 Extensible Grid Capability.. 8

2.1.2 Optimization Framework .. 9

2.1.3 Integrating with JSAF... 9

2.1.3.1 Initialization Time... 10

2.1.3.2 Scaling Factor ... 11

2.1.3.3 Checkpoints and Restarts.. 11

2.1.3.4 JSAF Integration ... 12

2.1.3.4.1 Loading and Saving JSAF Scenarios.. 12

2.1.3.4.2 Setting SimRate and Processing Up to a Given Time 13

 ii

2.1.3.4.3 Adjusting SimRate, Pausing Simulation, and Extracting Simulation Time 13

2.1.3.4.4 Loading Spreadsheets and Saving Parameters.. 14

2.1.3.4.5 Example .. 16

3.0 Implementing the DSAP MRF.. 19

3.1 MRF Components... 19

3.1.1 Tasker.. 20

3.1.2 Real-Time Tasker.. 20

3.1.3 Manager .. 21

3.1.4 MR_Console and Graphical User Interface (GUI) ... 22

3.1.5 Worker .. 23

3.1.6 Real-Time Worker .. 24

3.1.7 Plan Evaluator... 25

3.1.8 Real-Time Picture Evaluator... 26

3.2 Overall Control Flow for Predictive Operations... 27

4.0 Effectiveness Calculations .. 29

4.1 Raw Effectiveness Defined... 29

4.1.1 Calculating Raw Effectiveness ... 29

4.2 Relative Effectiveness Defined... 30

4.2.1 Calculating Relative Effectiveness ... 30

5.0 Operating the MRF ... 32

6.0 Roadmap for Operating DSAP on the Global Information Grid 35

6.1 Web Services .. 36

6.1.1 Structuring and Describing the Information ... 36

6.1.1.1 Military Scenario Description Language (MSDL) ... 36

6.1.1.2 Battle Management Language (BML) .. 37

6.1.1.3 Command and Control Information Exchange Data Model (C2IEDM) 37

6.1.2 Specifying the Web Services .. 37

6.1.3 Accessing and Communicating with the Web Service ... 37

6.1.4 Registration of Web Services.. 38

6.2 Advantages To Using DSAP In A SOA ... 38

6.2.1 Support for Real-time Picture Calibration .. 38

6.2.2 Support for Storing and Assessing Alternate COAs... 39

6.2.3 Proliferation of Results ... 39

 iii

6.2.4 Integration With Other Simulations for Analysis ... 39

7.0 DSAP Usage and Future Work ... 40

7.1 Future Work .. 40

8.0 Bibliography ... 41

9.0 Acronyms.. 42

List of Figures

Figure 1: Calibrated Real-time Simulation for Estimation ... 4

Figure 2: Predictive Simulations Faster-Than-Real-Time.. 5

Figure 3: DSAP Software Infrastructure... 5

Figure 4: Operation of the MRF ... 6

Figure 5: Extensible Grid Implementation ... 9

Figure 6: JSAF Initialization Time for Korean Scenario.. 10

Figure 7: Effect of SimRate on JSAF Execution Time... 11

Figure 8: The MRF ... 19

Figure 9: Sequence Diagram for MR_TBMCS_Tasker and TBMCS:... 20

Figure 10: UML Diagram for Server Component .. 21

Figure 11: Activity Diagram for MR_Manager's ProcessRtp().. 22

Figure 12: MR_Console and GUI Control Flow .. 23

Figure 13: MR_Worker Control Flow for Executing Faster-Than-Real-Time Simulations 24

Figure 14: Control Flow for MR_RT_Worker ... 25

Figure 15: Control Flow for MR_PlanEvaluator .. 26

Figure 16: Control Flow for RTP Evaluator ... 27

Figure 17: State Diagram for the RTP Evaluator.. 27

Figure 18: Control Flow for Predictive Operations .. 28

Figure 19: The MRF GUI ... 32

Figure 20: Selecting and Issuing a Tasking Script.. 33

Figure 21: GUI kicking off a JSAF Replication ... 33

Figure 22: Plan Evaluation Results... 34

 iv

Figure 23: Enhancing DSAP For Use On A Service-Oriented... 35

Figure 24: Using Live Data Feeds To Enhance State Estimation... 38

List of Tables

Table 1: Relating DSAP Capabilities to Software Infrastructure Technologies..................2

 1

1.0 Introduction
Military commanders desire timely battlefield information to make decisions based on the effects
of their plans and the current operational picture. Often times the existing plan requires
modification “on the fly” due to information that emerges through sensor detection and
intelligence inputs as circumstances evolve in the operational environment. This “emerging”
information causes decisions to be altered, assets to be re-tasked, and/or new alternatives to be
considered. As such, tools and techniques are needed to better support (1) analysis in the context
of this information, (2) training of Commanders and their staff in utilizing this information, and
(3) use of this information to enhance operations. This Final Report details efforts of RAM
Laboratories in developing a DSAP (Dynamic Situation Assessment and Prediction) software
infrastructure that supports each of these goals.

1.1 Significance to the Air Force
The concept of DSAP grew out of John R. Surdu’s Simulation in Operations research project and
prototype system (OpSim) by which he introduces the concept of operationally-focused
simulation. Through this concept, he defends his notion that simulation used in real-time
operational environments can be effective in supporting decision-makers. By embedding
simulation within an operational setting, decision-makers can use simulation to plan operations,
monitor current operations, determine deviations from a plan, predict outcomes, and project
different outcomes.

DSAP is achieved by implementing two distinct functions: (1) Dynamic Situation Assessment,
and (2) Prediction. Dynamic Situation Assessment is realized when methods and technologies
are implemented to fuse simulation with emerging, real-world data in order to provide a current
operational picture of the battlespace. For example, real-world data can be pulled from real-time
Command Control Computers Communications Intelligence (C4I) databases and used to
calibrate the estimated state of simulations reflecting the current state of operations. Prediction
techniques can be employed by simulating alternate plans forward in time from the current state,
providing predictive analysis of real-time battlefield effects to decision aids operating in real-
time. Thus, the prediction capability improves the real-time planning process by providing a
faster-than-real-time predictive assessment of Courses Of Action (COAs), alternate COAs, and
operational effects on-the-fly to support "what if" scenarios.

While this DSAP capability does not exist, it can be realized by augmenting existing decision
aids with faster-than-real-time simulation and advanced information technology concepts. To
enable these capabilities, the software frameworks supporting these decision aid technologies
must evolve. Specifically, enhancements are required for both new and legacy software
frameworks to support functionality that allows objects to be dynamically created, deleted and
reconfigured; allows simulations to be calibrated with live data feeds, and allows simulations to
reduce overheads while supporting these mechanisms in order to continue to run in real-time.
Section 1.1.1 discusses existing software infrastructure technologies and advanced information
management functionality that can support DSAP.

1.1.1 Infrastructure Enhancements and Functionality Required for DSAP
This subsection details some of the infrastructure enhancements and functionality for software
frameworks and infrastructure that can support DSAP functionality. A summary of some of this

 2

functionality is presented in Table 2 and a discussion of each type of functionality is provided in
subsequent sections.

Table 2: Relating DSAP Capabilities to Software Infrastructure Technologies.

SOFTWARE INFRASTRUCTURE
TECHNOLOGY CAPABILITY

Persistence Provide the capability to save the simulation state at various points in a simulation
execution.

Checkpoint/Restart Provide the capability to Restart the Simulation from a Saved State.

Dynamic Object Creation/Deletion Enter or remove new assets into a simulation and recalculate during run-time.

Live data feed Integration and Recalibration Enter or remove new sensor or parametric information during run-time. Reconfigure
scenario or vignette.

Rollback Framework Rewind a simulation to a key point in time where new assets are discovered or re-tasked.

Rollforward/Lazy Cancellation Fast-forward a simulation if new assets or re-tasking do not affect other assets.

Event Reparation Repair events that are not affected by newly discovered or removed assets.

Multiple Replications Utilizes distributed processing power to execute simulation replications faster.

1.1.1.1 Persistence and Checkpoint/Restart
Persistence and Checkpoint/Restart capabilities are important for enabling DSAP. The
persistence capability allows a simulation to be “rolled back” to a specific checkpoint. At that
checkpoint, assets playing in the simulation can be re-tasked to evaluate a new course of action.
Persistence provides a simulation with the capability to save its state (as a checkpoint), and
restart the simulation from any saved checkpoint. Persistence keeps track of memory allocations
and pointer references in an internal database by allowing an object, and all of the objects that it
references, to be packed into a buffer. During a restart, the buffer can be used to reconstruct the
object. Even though the newly reconstructed objects may be instantiated in different memory
locations, the persistence framework updates all affected pointer references to the new memory
locations.

1.1.1.2 Dynamic Object Creation/Deletion
One of the key technologies that must be supported to enable DSAP is a dynamic object
creation/deletion capability. The dynamic object creation/deletion capability allows simulation
objects to be created or deleted dynamically during run-time. DSAP is supported by enabling
assets to be dynamically created or deleted via user or machine interaction, thus allowing
simulations to introduce new targets of opportunity and re-task assets “on-the-fly.”

1.1.1.3 Rollback/Rollforward/Lazy Cancellation
DSAP requires a rollback framework that supports the rolling back of events to a given point in
time. By rolling back time, simulations can reprocess information from a point where new
direction can be taken. A DSAP capability also requires lazy cancellation and roll forward
functionality. A touch/depend system can be used to implement lazy cancellation by
automatically determining the state variables of a simulation that each event modifies and is
dependent upon. Events will then rollforward when rollback-causing stragglers do not affect the
outcome of processed events. This means that when the simulation state is rolled back (for the
purpose of object creation/deletion or re-tasking), the rolled back state is saved and then rolled
forward if those events are not effected by the new objects or re-tasking.

 3

1.1.1.4 Event Reparation
DSAP implementations require techniques that support event reparation. When rolling a
simulation back to address re-tasking issues or modify assets, events will be rolled back to a
specific point in the simulation. Some of these rollbacks will be due to straggler events. Some
events that are rolled back due to stragglers can be repaired. Implementing this technique for
those events would reduce the number of cascading rollbacks by fixing the events instead of
reprocessing them from scratch. This process will greatly improve the performance of many of
the built-in events that are currently used for distributing data. By employing this strategy,
performance improvements can allow simulations to execute at faster-than-real-time in order to
provide real-time predictive inputs to decision aids.

1.1.1.5 Multiple Replications
DSAP may require methods for supporting the use of multiple replicated trials in cases where
Monte Carlo or deterministic simulation is used. Monte Carlo simulations use pseudo random
number generators to execute a simulated scenario many times. Statistical analysis is then
performed on the collective outcomes to determine results. It is easy to achieve parallelism when
executing Monte Carlo simulations by farming the replications to available processors.

1.1.1.6 Calibration with Live Data Feeds
DSAP requires a software infrastructure that can be integrated with and calibrated by live data
feeds. The subsequent system maintains the capability to be updated by real-time data and
automatically re-simulate scenarios based on emerging situational assessments.

1.1.1.7 Summary of Required Infrastructure Capabilities
To realize this DSAP capability, this effort is developing an underlying software infrastructure
that supports C4I planning systems. This enhanced software framework realizes the predictive
functionality by supporting simulation capabilities that allow objects to be dynamically created,
deleted and reconfigured, while allowing simulations to be calibrated with live data feeds and
estimating the state of real-time operations.

The subsequent sections of this Technical Report discuss the implementation of the DSAP
software infrastructure using existing simulation and advanced information technology concepts.

• Section 2.0 discusses the Concept of Operations for DSAP and outlines the overarching
architecture and design tradeoffs.

• Section 3.0 discusses the design and implementation of a Multiple Replication Framework
(MRF) that is at the heart of the DSAP software infrastructure.

• Section 4.0 discusses the effectiveness measurements used to rank plans and alternatives

• Section 5.0 discusses the operation of the MRF.

• Section 6.0 discusses future enhancements to the DSAP infrastructure that will target its
deployment on the Global Information Grid (GIG).

• Section 7.0 covers DSAP usage and outlines future work.

• Section 8.0 provides the Bibliography for this Final Report.

• Section 9.0 defines the acronyms used in developing this report.

 4

2.0 DSAP Concept of Operations and Architecture
The Conceptual Operation of the DSAP Infrastructure supports real-time data calibration, real-
time state estimation through simulation, and predictive simulation through faster-than-real-time
simulation. The concepts of operation for the DSAP Infrastructure are shown in Figure 1 with
respect to the Dynamic Situation Assessment capability and Figure 2 with respect to the
Prediction capability. In Figure 1, the xp(t) axis simulates the current plan in real-time. This real-
time simulation is used to simulate the results and internal state of the operational picture. As this
real-time simulation evolves, it is constantly being updated with Blue and Red Force information
from C4I data feeds and databases. These real-time updates, denoted by the z(t) axis, are
provided to the real-time simulation of the current plan to calibrate the behavior of the simulated
COA. This calibrated real-time simulation is used to estimate the state of the real-time
operational picture, xe(t). This allows us to store the internal state, xe(t) of the mission in a
manner that provides our Dynamic Situation Assessment capability.

Figure 2 illustrates the predictive capability of DSAP. The individual plans, y(t), can be idealized
and executed out in time. This basically represents the behavior of the plan when the plan
executes as expected. These same plans and their alternatives are then simulated faster-than-real-
time, as denoted by the x(t) axis. By executing these plans faster-than-real-time, we provide a
predictive look into how a plan and its execution may unfold. Multiple plans and multiple
replications of each plan may be executed to provide a statistically significant outlook of a plan’s
anticipated outcomes based on the current operational information. This provides the Prediction
capability.

tx(t)
Simulation-
Based
Prediction

Plan A

Plan B

Rep 1
Rep 2
Rep N

..

..........

...

...

...
...

Rep 1
Rep 2
Rep N

..

....

Real-time
State Inputs z(t)

xp(t)Real-time
State
Estimator

TBMCS

xe(t)

t

t

...

...

tx(t)
Simulation-
Based
Prediction

Plan A

Plan B

Rep 1
Rep 2
Rep N

..

....

Rep 1
Rep 2
Rep N

..

...

............................

.........

......

......
.........

Rep 1
Rep 2
Rep N

..

....

Rep 1
Rep 2
Rep N

..

...

..........

Real-time
State Inputs z(t)

xp(t)Real-time
State
Estimator

TBMCS

xe(t)

t

t

......

......

Figure 1: Calibrated Real-time Simulation for Estimation

 5

tx(t)
Simulation-
Based
Prediction

Plan A

Plan B

Rep 1
Rep 2
Rep N

..

..........

...

...

...
...

Rep 1
Rep 2
Rep N

..

....

y(t)Plan
Forecasting

Plan A
Plan B t

...

...

tx(t)
Simulation-
Based
Prediction

Plan A

Plan B

Rep 1
Rep 2
Rep N

..

....

Rep 1
Rep 2
Rep N

..

...

............................

.........

......

......
.........

Rep 1
Rep 2
Rep N

..

....

Rep 1
Rep 2
Rep N

..

...

..........

y(t)Plan
Forecasting

Plan A
Plan B t

......

......

Figure 2: Predictive Simulations Faster-Than-Real-Time

2.1 DSAP Architecture
There are three key components to the DSAP Software Infrastructure: the Multi Replication
Framework (MRF), the Optimization Framework, and an Integrated version of Joint
SemiAutomated Forces (JSAF) to provide simulation components to the DSAP Infrastructure.
The MRF is used to provide a framework for support of multiple replications of any simulation
across parallel and distributed platforms. The Optimization Framework is responsible for
providing a framework for support of optimization problems across parallel and distributed
platforms and the Integrated JSAF allows for performing predictions using the JSAF simulations.
The overall architecture is shown in Figure 3. The element in red is the optimization framework,
the elements in green are the integrated JSAF, and the elements in black comprise the MRF. The
majority of the work performed on this effort covered the MRF and Integrated JSAF.

RT JSAF

Tasker

-

SERVERServer

RT JSAF

Tasker

-

FTRT JSAFFTRT JSAFFTRT JSAF

WorkerWorker
FTRT JSAFFTRT JSAFFTRT JSAF

WorkerWorker
RT_JSAFRT_JSAFRT_JSAF

WorkerWorker
RT_C_ JSAFRT_C_ JSAFRT_C_ JSAF

WorkerWorker

Optimization
Framework

OptimizationOptimization
FrameworkFramework

RT TaskerRT Tasker

Tasker

TBMCSTBMCSTBMCS

Realtime
Picture

Results
COA,
Scenario Info,
and RTP

EvaluatorEvaluatorEvaluator

WorkerWorker

RTP EvaluatorRTP EvaluatorRTP Evaluator

WorkerWorker

GUIGUI

Tasker
RT JSAF

Tasker

-

SERVERServerSERVERServer

RT JSAF

Tasker

-

FTRT JSAFFTRT JSAFFTRT JSAF

WorkerWorker
FTRT JSAFFTRT JSAFFTRT JSAF

WorkerWorker
FTRT JSAFFTRT JSAFFTRT JSAF

WorkerWorker
FTRT JSAFFTRT JSAFFTRT JSAF

WorkerWorker
RT_JSAFRT_JSAFRT_JSAF

WorkerWorker
RT_JSAFRT_JSAFRT_JSAF

WorkerWorker
RT_C_ JSAFRT_C_ JSAFRT_C_ JSAF

WorkerWorker
RT_C_ JSAFRT_C_ JSAFRT_C_ JSAF

WorkerWorker

Optimization
Framework

OptimizationOptimization
FrameworkFramework

RT TaskerRT Tasker

Tasker

RT TaskerRT Tasker

Tasker

TBMCSTBMCSTBMCS

Realtime
Picture

Results
COA,
Scenario Info,
and RTP

EvaluatorEvaluatorEvaluator

WorkerWorker
EvaluatorEvaluatorEvaluator

WorkerWorker

RTP EvaluatorRTP EvaluatorRTP Evaluator

WorkerWorker
RTP EvaluatorRTP EvaluatorRTP Evaluator

WorkerWorker

GUIGUI

Tasker

GUIGUI

Tasker

Figure 3: DSAP Software Infrastructure

 6

2.1.1 Multi Replication Framework Operation
The operation of the MRF is detailed in Figure 4. Replications are run on available processing
resources across a distributed gird. The results of those replication runs are saved to disk and
evaluated. The evaluation is performed to identify the most promising replication modeling an
alternate COA. In addition, each replication is evaluated against the real-time picture provided
by the Theater Battle Management Core Systems (TBMCS). TBMCS inputs are used to calibrate
JSAF running in real-time. This calibration process is used both to calibrate the real-time JSAF
simulation to assist in estimating the state of real-world operations, as well as to calibrate
predictive simulations and recommend candidates for pruning.

Replication 1

2
.
.
.

n

TBMCS

EvaluateEvaluateEvaluate EvaluateEvaluateEvaluate

t0 t1

t0 t1

t0 t1

t1 t2

t1 t2

RTP (Real-Time Picture)
Update

RTP
Update

. . .

Real-Time JSAF Real-time CalibrateCalibrateCalibrate CalibrateCalibrateCalibrate

Replication 1

2
.
.
.

n

TBMCS

EvaluateEvaluateEvaluate EvaluateEvaluateEvaluate

t0 t1

t0 t1

t0 t1

t1 t2

t1 t2

RTP (Real-Time Picture)
Update

RTP
Update

. . .

Real-Time JSAF Real-time CalibrateCalibrateCalibrate CalibrateCalibrateCalibrate

Figure 4: Operation of the MRF

The MRF is built on three key pieces of software infrastructure: Network Communications, a
Client Server ORB Infrastructure, and an Extensible Grid Capability. Network Communications
supports messaging between platforms supporting the MRF. The Client Server ORB
Infrastructure provides the interfaces to simplify the communications between platforms and the
Extensible Grid Capability provides the ability to manage the farming of applications in a
distributed compute grid. Each of these are described in greater detail in the following
subsections.

2.1.1.1 Network Communications
The Network Communications provides highly optimized services to allow single and multiple
processor computers to communicate across local and wide area networks. The Network
Communications layer minimizes message copying and memory allocation overheads by using
free lists to store incoming message parameters of fixed length. The Network Communications
also support heterogeneous networks that mix big and little endian data formats. The Network
Communications was the most basic building block of advanced information technology used on
this effort and served as the basis for both the Client Server ORB and Extensible Grid
implementations.

 7

2.1.1.2 Client Server ORB (Object Request Broker) Infrastructure
The Client Server ORB provides simplified interfaces for supporting the communication
between platforms. These interfaces have the requirement of providing a distributed object
interface to support network programming. These interfaces are language and platform
independent. This effort examined three possible solutions for providing this Client Server ORB
Infrastructure: ACE + TAO, the Synchronous Parallel Environment for Emulation and Discrete
Event Simulation (SPEEDES) / Common Component Simulation Engine (CCSE) ORB
Infrastructure, and RAM ORB, an open source ORB infrastructure developed by RAM
Laboratories, Inc. in support of another Department of Defense (DoD) effort. A comparison of
these solutions is discussed below.

2.1.1.2.1 ACE + TAO
ACE + TAO is middleware that supports portability and software reuse. ACE + TAO is
comprised of ACE (Adaptive Communication Environment) and The ACE ORB (TAO). ACE is
an open source framework that provides components and patterns for developing high-
performance concurrent communication software for distributed real-time and embedded
systems. ACE simplifies development of OO (Object-Oriented) network applications and
services that utilize interprocess communication, event demultiplexing, explicit dynamic linking,
and concurrency. ACE also automates system configuration and reconfiguration and masks
operating system differences.

TAO provides an open-source implementation of a Common Object Request Broker
Architecture (CORBA) Object Request Broker (ORB). It allows clients to invoke operations on
distributed objects without concern for object location, programming language, OS platform,
communication protocols and interconnects, and hardware. TAO is built using components and
patterns in the ACE framework.

TAO captures key design patterns and optimization principle patterns necessary to develop
standards-compliant Quality of Service (QoS)-enabled ORBs. It combines real-time Input/Output
(I/O) subsystem architecture and optimization strategies with ORBs to provide vertically
integrated ORB end systems supporting end-to-end throughput, latency, jitter, and dependability
QoS requirements

2.1.1.2.2 SPEEDES/CCSE Client Server Functionality
SPEEDES/CCSE provides interfaces for a standard communication infrastructure that is used to
connect networked simulations together. A general-purpose client/server infrastructure
coordinates message passing between machines in a local area network and between multiple
local area networks in a wide area network. The client/server infrastructure supports dynamic
connectivity to allow new applications to join the system and fault tolerance when applications
exit the system. The client/server infrastructure is distributable, redundant, facilitates multiple
service types, and coordinates multiple user groups. It also supports heterogeneous networks that
mix large and small endian data formats.

A generic client/server model is used to support multiple services types within a server process.
Multiple servers may be used to connect local networks to other local networks. In this manner, a
spider-web like network of servers tries to minimize message congestion while optimally routing
messages. Each server type is represented as a class in the server process. Message headers for

 8

services requested by the client to the server process include information describing the type of
service requested, the specific service requested, and the group Id of the requester.

2.1.1.2.3 RAM Object Request Broker
The RAM ORB allows clients to first connect to their server process and then freely send
messages to the server. Clients use the RAM ORB layer, then poll to receive incoming messages.
Servers differ from clients in that they only process incoming messages. Servers go to sleep
when there are no incoming messages to process.

Fault tolerance and dynamic connectivity capabilities allow for new applications to seamlessly
join and exit the networked system. The client/server infrastructure supports multiple server
types and object Ids.

Multiple servers may be used to connect local networks to other local networks. In this manner, a
spider-web like network of servers tries to minimize message congestion while optimally routing
messages. Each server type is represented as a class in the server process. Message headers for
services requested by the client to the server process include information describing the type of
service requested, the specific service requested, and the group Id of the requester.

2.1.1.2.4 Selection of ORB Technology
As a result of our trade study, the RAM ORB was selected for this effort because of its support
for two-way interfaces and its support for both networked and shared memory communications,
thus allowing for the potential use of multi-processor clients when conducting faster-than-real-
time simulation.

2.1.1.3 Extensible Grid Capability
The Extensible Grid works in a server-client implementation consisting of three components that
enable maximum performance and highest reliability on a distributed network. The Extensible
Grid is built on Object Request Broker (ORB) technology. The components of the Extensible
Grid include the Server, Tasker, and Worker, providing the infrastructure necessary to deliver an
advanced grid system implementation. Figure 5 shows an Extensible Grid implementation
utilizing with the individual components.

 9

Worker

Tasker

Tasker

Worker Worker

Taskerr

Server

Shared Memory

TCP/IP

Figure 5: Extensible Grid Implementation

The Server is the backbone of the system and requires no additional implementation on the
developer end. The Server is an executable that handles receiving, queuing, and intelligent task
distribution. The Server receives individual tasks from the Tasker and distributes those tasks to
the receiving Workers.

The Tasker is the main interface for tasking the system. The Tasker’s tasks include: 1)
instantiating the Tasker and connecting to the Server, 2) sending tasks to the server, 3) waiting
for all or some tasks to be completed, and 4) getting the results for each task back from the
Server. The Tasker connects to the Server in a ready state, sends tasks and receives results.

As the tasks are being received, the information on a task can be accessed. The task list can be
traversed or a specific task can be directly viewed. The Server also informs the Tasker whether a
particular task has been addressed by Workers residing on the grid.

The Worker is the component that executes the application on a specific grid node. Just like the
Tasker, the Worker connects to the server when it is instantiated. The main focus of the worker
is to analyze data received, execute the application, and send back a response.

2.1.2 Optimization Framework
The Optimization Framework feature provides the capability to support optimization of cost
functions across parallel and distributed platforms based on the feedback from predictive
simulation replications. The Optimization Framework is comprised of a Rollback Framework, a
Persistence Framework, Communications, Event Processing, Branch Management Capabilities, a
Branch Modeling Framework and a Cost Function Evaluator. Requirements for the Optimization
Framework were developed on this effort, however, the design and implementation steps will be
addressed further down on the DSAP development roadmap.

2.1.3 Integrating with JSAF
In order to use JSAF as both a predictive tool and as a state estimator, the MRF was integrated
with Joint Semi-Automated Forces. A key constraint that was brought about in this area involved

 10

JSAF’s use as a predictive tool. To provide a prediction capability, JSAF had to execute faster-
than-real-time in order to provide predictive responses to DSAP users operating in real-time. To
address this faster-than-real-time constraint, several key functional areas of JSAF must execute
in a timely manner. An effort was performed to benchmark the JSAF scenarios to ensure that it
could be used as a predictive tool. The benchmarking used an Air Tasking Order from the
Korean scenario (korea-ato.xls) that was simulated for over 26 hours of simulation time using
JSAF. JSAF was run on a 1.7 GHz Intel i686 processor running RedHat Linux Version 9.0. The
platform had a 500 MB hard drive and a 256 KB cache. Several key parameters were
benchmarked to ensure that JSAF simulations could be executed within a 15-minute time
window. The 15-minute window exists because that is the rate at which TBMCS will be used to
calibrate JSAF scenarios running in real-time. The key measurements that were identified
through benchmarking included:

• The simulation initialization time needed to be identified.

• The scaling factor for the simulation had to be determined with respect to time.

• The accuracy of the scaled simulation with respect to the real-time scaling factor had to
be determined.

• The amount of time required for performing checkpoints and restarts had to be
determined.

Benchmarks concerning each of these metrics is discussed in the subsections below.

2.1.3.1 Initialization Time
The initialization time was measured for JSAF simulations for both real-time and scaled real-
time simulations. The benchmarking was performed with the GUI turned off. Initialization time
was measured with respect to the wall clock. The average initialization time was 2 minutes and
51 seconds for the Korean scenario. Figure 6 depicts the initialization time for the Korean
scenario with respect to the real-time scaling factor.

Simulation Initialization Time

2:31

2:38

2:45

2:52

3:00

3:07

0 100 200 300 400 500 600 700

Scaling Factor

In
iti

al
iz

at
io

n
Ti

m
e

(m
in

)

Simulation Initialization Time

2:31

2:38

2:45

2:52

3:00

3:07

0 100 200 300 400 500 600 700

Scaling Factor

In
iti

al
iz

at
io

n
Ti

m
e

(m
in

)

Figure 6: JSAF Initialization Time for Korean Scenario

 11

2.1.3.2 Scaling Factor
The ATO for the Korean scenario was run on JSAF in both real-time, as a scaling factor of real-
time, and as fast as possible. Our benchmarks found that the scaling was not linear and that the
scenario execution topped out at 350X real-time. The benchmarks of the wall clock simulation
time versus the scaling factor are shown in Figure 7. This meant that the fastest simulation
execution from start to finish was about 4 and a half minutes.

Effect of Scaling Factor on Simulation Run Time

0:00

2:24

4:48

7:12

9:36

12:00

14:24

0 100 200 300 400 500 600 700

Scaling Factor

S
im

ul
at

io
n

Ru
n

Ti
m

e
(m

in
)

Effect of Scaling Factor on Simulation Run Time

0:00

2:24

4:48

7:12

9:36

12:00

14:24

0 100 200 300 400 500 600 700

Scaling Factor

Si
m

ul
at

io
n

R
un

 T
im

e
(m

in
)

Figure 7: Effect of SimRate on JSAF Execution Time

It should be noted, however, that the simulated JSAF execution at this simulation rate was found
to lack accuracy due to events being queued and delayed at the initialization of JSAF executions.
This fact rendered excessively large simulation rates useless.

Subsequent simulation runs using DSAP for predictive analysis of JSAF plans have shown that
for a modified and substantially smaller version (around 20 entities) of the Korean scenario that
RAM Laboratories constructed, a scaling factor of around 14x was the maximum that could be
used. The reasons for this are the following: because JSAF is a real-time simulation, the real-
time simulation clock immediately starts upon execution or launch of JSAF. When large scaling
factors are used, JSAF starts its scaled clock while instantiating the scenario under evaluation.
This often pushes events to the right on the timeline while JSAF is constructing entities in the
simulation. For large simulations, this scaling factor starts approaching 1x.

2.1.3.3 Checkpoints and Restarts
The Korean scenario was used to benchmark JSAF checkpoints and restarts. No correlation was
found between using scaling factors for the simulation rate and the time it took to perform
checkpoints or restarts. The average checkpoint time on the platform was 23 seconds. The
average restart time was 2 minutes 31 seconds. No restart took longer than 3 minutes 15 seconds
to perform.

When DSAP is installed across a distributed grid in a laboratory setting, there were several issues
with JSAF surrounding the Checkpoint and Restart process. The major problem found with the

 12

Checkpoint and Restart process is that JSAF often was found to “ghost” checkpointed entities
across a restarted simulation. This meant that JSAF often detected other running JSAF
executions on the network and instantiated those entities as well as its own. In addition, there
were issues with constructing Red Force target data when running more than one JSAF
execution.

2.1.3.4 JSAF Integration
This subsection covers the effort required for integrating JSAF with the MRF for use as both a
predictive tool and a state estimator. Specifically, the MRF needs to load scenarios, save
scenarios, execute scenarios and adjust the simulation rate. All of these must be executed from a
command line to trigger JSAF execution.

2.1.3.4.1 Loading and Saving JSAF Scenarios
The following code snippets detail the process for loading and saving JSAF scenarios. The
loading and saving of JSAF scenarios allows for checkpointing and restarting JSAF simulations.
The restart process will serve as the starting point for branching replications.

Code Segment 1: Loading and Saving JSAF Scenarios: Loading and Saving JSAF Scenarios

libpo.h

// Save all objects into a file

extern int32 po_begin_save(PO_DATABASE *db,

 char *fname);

// Load a file containing persistent objects. 'prevent_foreign_origin' is a
boolean flag

// that indicates wether or not libpo should fail if the saved scenario's
creator (ie.

// hostname of the GUI that saved the scenario) doesn't match the hostname of
the GUI that

// is trying to load it.

extern int32 po_begin_load(PO_DATABASE *db,

 char *fname,

 int32 prevent_foreign_origin = 0);

// Completly clear out a database

extern void po_new_scenario(PO_DATABASE *db);

libpo_local.h

// po_write.c:

extern int32 po_save_to_file(PO_DATABASE *db,

 char *fname);

 13

2.1.3.4.2 Setting SimRate and Processing Up to a Given Time
The following code snippets detail the process for setting the SimRate to run as fast as possible
and to process up to a specified time. These capabilities can be used to run JSAF faster than real
time and will allow JSAF to be used in a predictive capacity.

Code Segment 2: Setting the SimRate and Processing Up To A Given Time

libsched.h

// Sets whether to keep time_realtime_clock slaved to real time, or whether
to skip ahead to

// the next time there's something to do.

extern void sched_set_fast_as_possible(int32 run_fast_as_possible);

// Runs the scheduler until the specified deadline. The time used is that
from

// time_realtime_clock. A deadline of 0xFFFFFFFF will run indefinitely. To
just run

// pending functions, pass time_last_realtime_clock + 1.

extern void sched_invoke_functions_until(uint32 deadline);

2.1.3.4.3 Adjusting SimRate, Pausing Simulation, and Extracting Simulation Time
The following code snippet details the process for adjusting the SimRate, pausing the simulation
and obtaining the simulation time. These features are necessary to calibrate the running JSAF
simulation and to extract run-time diagnostics.

Code Segment 3: Adjusting the SimRate, Pausing the Simulation, Extracting the Simulation Time

libtime.h

// Sets the relationship between the simulation clock and real time.

extern void time_set_simulation_rate(float64 rate);

// Gets the simulation rate.

extern float64 time_get_simulation_rate(void);

// Stops advance of simulation time. If multiple pause handles are
outstanding, the

// simulation will be paused if ANY of them request a pause.

extern void time_pause(TIME_PAUSE_HANDLE handle);

 14

// Starts advance of simulation time. If multiple pause handles are
outstanding, the

// simulation will not resume until ALL of them are unpaused.

extern void time_unpause(TIME_PAUSE_HANDLE handle);

// Returns the current simulation time.

extern uint32 time_simulation_time(void);

// Returns the realtime at the last simulation frame

extern uint32 time_realtime_last_sim_frame(void);

// Returns the time of the real time clock in milliseconds.

extern uint32 time_realtime_clock(void);

// Returns the time at the last check of the realtime clock.

extern uint32 time_get_last_realtime(void);

2.1.3.4.4 Loading Spreadsheets and Saving Parameters
The following code snippet demonstrates the process for loading spreadsheets into JSAF and
saving parameters. This process is used to save a checkpointed simulation for use in determining
the cost or goodness of that simulation.

Code Segment 4: Loading and Saving Spreadsheets

libspreadsheet.h

extern void sprdsht_load_spreadsheet(char *filename,

 PO_DATABASE *po_db);

extern void sprdsht_read_sprdsht(FILE *readfile,

 char *fname,

 PO_DATABASE *db);

extern void sprdsht_write_pts_to_file(FILE *write_file,

 char *fname,

 PO_DATABASE *db,

 15

 PO_DB_ENTRY *ovl_entry,

 uint8 save_type);

extern void sprdsht_write_units_to_file(FILE *write_file,

 char *fname,

 PO_DATABASE *db,

 uint8 save_type);

extern void sprdsht_write_lat_long(FILE *file_ptr,

 float64 gcsloc[XYZC]);

// Converts and calls the above

extern void sprdsht_write_lat_long(FILE *file_ptr,

 PointLocation3D *pt);

// Converts and calls the above

extern void sprdsht_write_lat_long_3e(FILE *file_ptr,

 float64 xval,

 float64 yval,

 float64 zval,

 int32 cell);

// Write points in MGRS coordinates

extern void sprdsht_write_mgrs_coords(FILE *file_ptr,

 float64 gcsloc[XYZC]);

// Converts and calls the above

extern void sprdsht_write_mgrs_coords(FILE *file_ptr,

 PointLocation3D *pt);

extern void sprdsht_write_mgrs_coords_3e(FILE *file_ptr,

 float64 xval,

 float64 yval,

 float64 zval,

 int32 cell);

 16

// Write points in GCC coordinates

extern void sprdsht_write_gcc_coords(FILE *file_ptr,

 float64 gcsloc[XYZC]);

// Converts and calls the above

extern void sprdsht_write_gcc_coords(FILE *file_ptr,

 PointLocation3D *pt);

2.1.3.4.5 Example
The follow code snippets demonstrate how the original JSAF code (Code Segment 5) can be
modified to support the loading and executing of multiple replications.

Code Segment 5: Original JSAF Code

main.c // JSAF original example

int main(int argc, argv_t argv) {

 int status = main_init(argc, argv);

 if (status)

 return status;

 // Fire up the scheduler

 sched_invoke_functions_until(0xFFFFFFFF);

 // Not reached

 return(0);

}

Code Segment 6: Modifications For Integration with MRF

 17

main.c // RamLabs mod

int main(int argc, argv_t argv) {

 int status = main_init(argc, argv);

 if (status)

 return status;

 // run 10 batches

 int counter;

 for (counter=0; counter<10; counter++) {

 cout << "Counter = " << counter << endl;

 // have correct scenario path

 char *name = "/users/jsaf/JSAF5/scenarios/scenarioName.1/scenarioName";

 cout << "Loading scenario: " << name << endl;

 // load scenario

 po_begin_load(static_po_db, name);

 cout << "Done loading scenario: " << name << endl;

 int time;

 for (time=0; time<10000; time+=1000) {

 cout << "Process up to " << time << endl;

 // Fire up the scheduler

 sched_invoke_functions_until(time);

 }

 po_new_scenario(static_po_db);

 }

 cout << "Done - exiting..." << endl;

 18

 // Not reached

 return(0);

}

 19

3.0 Implementing the DSAP MRF
An overview of the current capabilities of the DSAP prototype is shown via the MRF in Figure
8. The MRF serves to farm-out and run multiple replications of plans and alternative COAs via
faster-than-real-time simulation. When real-time updates are available, state information from
the real-time state estimation simulation are calibrated with real-time C4I inputs, saved and
compared with the state information from the predictive plans. Plan replications that diverge
from the real-time picture beyond a prediefined threshold are automatically pruned and replaced.
Our MRF prototype manages this entire process by utilizing TBMCS for our real-time C4I inputs
and JSAF as both the real-time and faster-than-real-time simulation components. JSAF was
selected as our simulation component because of its ability to simulate a Joint Urban Operations
(JUO) environment (as well as theater operations) as well as its enhanced support for intelligent
ground clutter models. It should also be noted that other simulations can be used as the
simulation component depending on the desired application.

MR_RTP_Evaluator
(Worker)

MR_Workers

FTRT JSAF
Execution

MR_RT_Worker
RT JSAF
Execution

MR_Plan_Evaluator
(Worker)

MR_Manager
(Server)

MR_Tasker

(TBMCS)

MR_RT_Tasker

MR_Gui

MR_RT_C_Worker

Calibrated
JSAF

Execution
MR_Plan_Evaluator

(Worker)
MR_RTP_Evaluator

(Worker)
MR_RTP_Evaluator

(Worker)

MR_Workers

FTRT JSAF
Execution

MR_RT_Worker
RT JSAF
Execution

MR_Plan_Evaluator
(Worker)

MR_Plan_Evaluator
(Worker)

MR_Manager
(Server)

MR_Manager
(Server)

MR_Tasker

(TBMCS)

MR_RT_Tasker

MR_Gui

MR_RT_C_Worker

Calibrated
JSAF

Execution
MR_Plan_Evaluator

(Worker)
MR_Plan_Evaluator

(Worker)

Figure 8: The MRF

Currently, the MRF has the capability to simultaneously simulate multiple plans and replications
of a plan faster-than-real-time across a network of computers. The MRF has the ability to
compare the simulation state of a faster-than-real-time replication with the plan objectives and
real-time picture. Replications that diverge from the real-time picture beyond a predefined
threshold are automatically pruned and replaced; Commanders have the capability to manually
prune ineffective plans and task alternative plans. The MRF runs a real-time state estimation
simulation that can pull data from live sources; this data is used to continuously update the real-
time simulation. The components required to provide this functionality are described in the
following subsections.

3.1 MRF Components
The MRF contains three basic types of components: taskers, workers, and a manager. Taskers
function to task the manager with applications for workers to run, and specify how these

 20

applications should be initialized. Workers execute the tasks assigned by the manager, including
executing the simulation replications, saving the results of the replications, and evaluating and
comparing the results of the replications to the plan objectives and real-time picture. The
manager divides the replications into smaller time segments and assigns these tasks to the
workers, handles the bookkeeping, and tackles flow control issues. Figure 8 illustrates each of
these components and their connectivity with the manager. The role of each of the specific MRF
components is discussed in the following subsections.

3.1.1 Tasker
The Tasker component interfaces with Command and Control to send a predictive simulation
task to the server. The Tasker provides connectivity to the server and allows the user to specify
initialization parameters such as the simulation execution name, initial scenario file, start and end
time, simulation scaling rate, and replication number.

3.1.2 Real-Time Tasker
The Real-Time Tasker component issues a task to the server to initiate the real-time worker. The
Real-Time Tasker provides connectivity to the server and allows the user to specify the
simulation execution name, initial scenario file, name of the plan the task corresponds to, and the
time interval between saving the state of the simulation.

The Real-Time Tasker component, MR_TBMCS_Tasker, provides the capability to allow the
user to retrieve the Real-Time Picture (RTP) from TBMCS or another C4I data source via
command line or GUI. The sequence diagram defining the operation of the MR_TBMCS_Tasker
is shown in Figure 9.

TBMCSTBMCSTBMCS

Query DatabaseQuery Database

ExecuteExecute
QueryQuery

MultiRepTbmcsTaskerMultiRepTbmcsTaskerMultiRepTbmcsTasker

Return ResultsReturn Results

Disconnect from DatabaseDisconnect from Database

Connect to DatabaseConnect to Database

AcknowledgementAcknowledgement

TBMCSTBMCSTBMCS

Query DatabaseQuery Database

ExecuteExecute
QueryQuery

MultiRepTbmcsTaskerMultiRepTbmcsTaskerMultiRepTbmcsTasker

Return ResultsReturn Results

Disconnect from DatabaseDisconnect from Database

Connect to DatabaseConnect to Database

AcknowledgementAcknowledgement

Figure 9: Sequence Diagram for MR_TBMCS_Tasker and TBMCS:

The MR_TBMCS_Tasker is a Tasker component that automates the process of retrieving real-
time C4I information from TBMCS. For TBMCS connectivity, both ODBC and JDBC were
tried. Some problems existed with ODBC and have not been resolved. The Tasker/JDBC
approach to TBMCS connectivity has been implemented and tested.

 21

3.1.3 Manager
The server, or manager, component is the core of the MRF. The server is responsible for 1)
managing the execution of long replications by splicing them in time, 2) constructing the
necessary parameters needed for a worker to launch and save a JSAF execution, 3) constructing
the necessary parameters for launching an evaluation on an evaluator component, 4) displaying
diagnostics related to the execution of multiple replications, 5) identifying when replications are
completed, 6) pruning and re-tasking replications that are off course from the real-time picture,
and 7) restarting unfinished replications in the event of a worker crash or disconnect.

The Server design builds off of the Server used to implement the Extensible Grid. The Server
capability for this effort inherits from the WpNetGridServer, which is the Server for the
Extensible Grid, which in turn inherits from WpServer, which is the basic server capability in the

WarpIV Framework. The UML Class Diagram for the Server design is shown in Figure 10.
Figure 10: UML Diagram for Server Component

The Server is responsible for implementing the following functionality:

• Managing executions of long replications by splicing them in time.

• Constructing the necessary parameters needed for launching an execution on a Worker.

• Displaying diagnostics related to the execution of multiple replications.

• Supporting multiple groups for the same exercise on the same server.

• Providing a measure of fault tolerance for running multiple replications.

• Restarting unfinished replications if a Worker crashes or is unable to complete its task.

The Server component, MR_Manager, is responsible for managing the execution and evaluation
of the replications. The Activity Diagram for the MR_Manager with respect to the ProcessRtp()
function is shown in Figure 11. This Activity Diagram defines the process for managing the
replications through their RTP evaluation.

WpServerWpServer

WpNetGridServerWpNetGridServer

WpNetServerMultiRepWpNetServerMultiRep Any other Application…Any other Application…WpNetGridSystemServerWpNetGridSystemServer

(Unix) (JSAF) (Anything)

WpServerWpServer

WpNetGridServerWpNetGridServer

WpNetServerMultiRepWpNetServerMultiRep Any other Application…Any other Application…WpNetGridSystemServerWpNetGridSystemServer

(Unix) (JSAF) (Anything)

WpServerWpServer

WpNetGridServerWpNetGridServer

WpNetServerMultiRepWpNetServerMultiRep Any other Application…Any other Application…WpNetGridSystemServerWpNetGridSystemServer

(Unix) (JSAF) (Anything)

 22

Evaluation in Progress?Evaluation in Progress?

Evaluations complete?Evaluations complete?
Latest results completeLatest results complete

& beyond & beyond timetimeRtpRtp

Prune RTPsPrune RTPs

Set NumCompleted = 0Set NumCompleted = 0

NoNo
YesYes

NoNo

YesYesYesYes

NoNo

Task Results to GridTask Results to Grid

Copy latest results to RtpMgrCopy latest results to RtpMgr

Determine NumEvaluationsDetermine NumEvaluations

Evaluation in Progress?Evaluation in Progress?

Evaluations complete?Evaluations complete?
Latest results completeLatest results complete

& beyond & beyond timetimeRtpRtp

Prune RTPsPrune RTPs

Set NumCompleted = 0Set NumCompleted = 0

NoNo
YesYes

NoNo

YesYesYesYes

NoNo

Task Results to GridTask Results to Grid

Copy latest results to RtpMgrCopy latest results to RtpMgr

Determine NumEvaluationsDetermine NumEvaluations

Figure 11: Activity Diagram for MR_Manager's ProcessRtp()

3.1.4 MR_Console and Graphical User Interface (GUI)
The MR_Console component provides the user with diagnostics with respect to operation of the
MRF. The MR_Console also allows the user to monitor the status of the MRF. The Sequence
Diagram for the MR_Console is shown in Figure 12. In addition to simply monitoring status and
setting the time interval for faster-than-real-time simulations, the MR_Console has been
modified to host our Graphical User Interface. The MR_Console now queries the server to return
the status of replications, provides functionality to modify time intervals and end times, provides
functionality to modify pruning thresholds, and provides the capability to allow the user to prune
replications or plans using the GUI.

 23

WpMultiRepServerWpMultiRepServerWpMultiRepServer

MonitorStatusMonitorStatus
GetsGets
StatusStatus

MultiRepConsoleMultiRepConsoleMultiRepConsole

ReturnStatusReturnStatus

ModifyTimeIntervalModifyTimeInterval
UpdatesUpdates
timeIntervaltimeInterval

GetReplicationStatusGetReplicationStatus
GetsGets
StatusStatusReturnStatusReturnStatus

ModifyEndTimeModifyEndTime
UpdatesUpdates
endTimeendTimeModifyPruningThresholdModifyPruningThreshold
UpdatesUpdates
pruningThresholdpruningThresholdPrune Replication / PlanPrune Replication / Plan
PrunesPrunes
Replication / PlanReplication / Plan

WpMultiRepServerWpMultiRepServerWpMultiRepServer

MonitorStatusMonitorStatus
GetsGets
StatusStatus

MultiRepConsoleMultiRepConsoleMultiRepConsole

ReturnStatusReturnStatus

ModifyTimeIntervalModifyTimeInterval
UpdatesUpdates
timeIntervaltimeInterval

GetReplicationStatusGetReplicationStatus
GetsGets
StatusStatusReturnStatusReturnStatus

ModifyEndTimeModifyEndTime
UpdatesUpdates
endTimeendTimeModifyPruningThresholdModifyPruningThreshold
UpdatesUpdates
pruningThresholdpruningThresholdPrune Replication / PlanPrune Replication / Plan
PrunesPrunes
Replication / PlanReplication / Plan

Figure 12: MR_Console and GUI Control Flow

The GUI provides a graphical user interface component for MRF users. The GUI provides a
wrapper to interface with the tasker and server components that enable the user to kick off tasks,
modify the simulation end time, modify the pruning threshold, prune replications, prune plans,
and visualize the relative effectiveness of each plan.

3.1.5 Worker
The Worker component, MR_Worker, receives simulation tasking from the server and launches
predictive JSAF executions that run faster-than-real-time. The Worker is responsible for
launching JSAF replications faster-than-real-time for a predetermined length of time. The
Worker receives a command from the MR_Manager to launch a JSAF execution. This command
is accompanied by parameter sets (specifying the SimRate, start time, end time and other
variables), environment variables and scenario spreadsheets. The Worker also gathers the results
from the replication execution in spreadsheet format and sends the information back to the
MR_Manager.

Upon completion of the replication, the Worker saves the state of the simulation to disk and
sends it to the server for later evaluation and comparison with real-time data and the plan
objectives. Replications that stray from the real-time picture beyond a predefined threshold are
automatically pruned, re-tasked by the server, and initialized to match the current state.
Replications that fail to meet the plan objectives can be manually pruned by Command Staff, and
if pruned, they are automatically re-tasked by the server and initialized to match the current state.

The Sequence Diagram specifying the operation of the Worker executing FTRT JSAF scenarios
is shown in Figure 13 with respect to the rest of the MRF.

 24

WpMultiRepServerWpMultiRepServerWpMultiRepServer

ProcessRep() TASKProcessRep() TASK

ManageManage
TaskTask

MultiRepWorkerMultiRepWorkerMultiRepWorkerMultiRepTaskerMultiRepTaskerMultiRepTasker JSAFJSAFJSAF

LoopsLoopsFarm out TasksFarm out Tasks
(if possible)(if possible)

ProcessRep() REQUESTProcessRep() REQUEST

ProcessRep() RESPONSEProcessRep() RESPONSE

Set Environment Variables Set Environment Variables
((execution, startTime, etcexecution, startTime, etc.).)

Reads Envs,Reads Envs,
Runs Exec,Runs Exec,
Saves, &Saves, &
ExitsExits

LaunchesJSAFLaunchesJSAF

WpMultiRepServerWpMultiRepServerWpMultiRepServer

ProcessRep() TASKProcessRep() TASK

ManageManage
TaskTask

MultiRepWorkerMultiRepWorkerMultiRepWorkerMultiRepTaskerMultiRepTaskerMultiRepTasker JSAFJSAFJSAF

LoopsLoopsFarm out TasksFarm out Tasks
(if possible)(if possible)

ProcessRep() REQUESTProcessRep() REQUEST

ProcessRep() RESPONSEProcessRep() RESPONSE

Set Environment Variables Set Environment Variables
((execution, startTime, etcexecution, startTime, etc.).)

Reads Envs,Reads Envs,
Runs Exec,Runs Exec,
Saves, &Saves, &
ExitsExits

LaunchesJSAFLaunchesJSAF

Figure 13: MR_Worker Control Flow for Executing Faster-Than-Real-Time Simulations

3.1.6 Real-Time Worker
The Real-Time Worker component, MR_RT_Worker, receives a simulation task from the server
to launch a JSAF execution in real-time. The MR_RT_Worker is used to run real-time JSAF
executions (or executions of other simulations) in order to support the state estimation capability
in the MRF. The MR_RT_Worker is responsible for running the real-time simulation, updating
the simulation with TBMCS information (in the case of the calibrated real-time simulation), and
saving checkpoints of the simulation to intermediate results files for effectiveness evaluations.
The sequence diagram of the MR_RT_Worker is shown in Figure 14. For the MR_RT_Worker,
the worker connects to the server and requests tasking. The Tasking, when provided to the server
from the MR_RT_Tasker (the old MR_TBMCS_Tasker) then assigns tasks to the Server, which
are passed to the MR_RT_Worker. The MR_RT_Worker executes JSAF tasks and sends results
back to the Server every 15 minutes. In addition, the MR_RT_Tasker continually updates the
real-time simulation every 15 minutes.

 25

Figure 14: Control Flow for MR_RT_Worker

3.1.7 Plan Evaluator
The Plan Evaluator component, MR_PlanEvaluator, is responsible for comparing the state of the
saved faster-than-real-time replications with the plan objectives. The MR_PlanEvaluator is a
Worker that evaluates the results of the JSAF replication executions against other results. The
MR_PlanEvaluator takes each of the result spreadsheets and evaluates them to determine the
“best” plan. The evaluation is performed by executing the function PlanEvaulator(). The control
flow for the MR_PlanEvaluator is shown in Figure 15, when considering the sequence of
operations between the MR_PlanEvaluator, MR_Server, and MR_Worker. The
MR_PlanEvaluator requests tasks from the server. When results spreadsheets are available at the
MR_Server, those results are tasked to the MR_PlanEvaluator, which evaluates the effectiveness
of each plan. The effectiveness results are then sent back to the Server, and the MR_Evaluator is
also tasked to begin evaluatoing those results against the current real-time picture.

WpMultiRepServerWpMultiRepServerWpMultiRepServerMultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker MultiRepRtWorkerMultiRepRtWorkerMultiRepRtWorker

RealTimeTask() TASKRealTimeTask() TASK

Connect to Connect to
TBMCS & TBMCS &

Compare to Compare to
ResultResult

Set EnvironmentSet Environment
VariablesVariables

LaunchLaunch
JSAFJSAF

LoopsLoops
~ 15 min~ 15 min

RealTimeTask() REQUESTRealTimeTask() REQUEST

RealTimeTask() RESPONSERealTimeTask() RESPONSE

Send Task: Send Task: ResultResult

Request Task: Request Task: ResultResult

Return Task: Return Task: ResultResult

Send Task: Send Task: RtpRtp

Send Task: Send Task: RtpRtp

CalibrateCalibrate
JSAFJSAF

SaveSave
JSAFJSAF

LoopsLoops

WpMultiRepServerWpMultiRepServerWpMultiRepServerMultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker MultiRepRtWorkerMultiRepRtWorkerMultiRepRtWorker

RealTimeTask() TASKRealTimeTask() TASK

Connect to Connect to
TBMCS & TBMCS &

Compare to Compare to
ResultResult

Set EnvironmentSet Environment
VariablesVariables

LaunchLaunch
JSAFJSAF

LoopsLoops
~ 15 min~ 15 min

RealTimeTask() REQUESTRealTimeTask() REQUEST

RealTimeTask() RESPONSERealTimeTask() RESPONSE

Send Task: Send Task: ResultResult

Request Task: Request Task: ResultResult

Return Task: Return Task: ResultResult

Send Task: Send Task: RtpRtp

Send Task: Send Task: RtpRtp

CalibrateCalibrate
JSAFJSAF

SaveSave
JSAFJSAF

LoopsLoops

 26

WpMultiRepServerWpMultiRepServerWpMultiRepServerMultiRepWorkerMultiRepWorkerMultiRepWorker MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator

Send Task: Send Task: ResultResult
Completed andCompleted and
Validated TaskValidated Task

Return Task: Return Task: ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops

Request Task: Request Task: ResultResult

Send Effectiveness ValuesSend Effectiveness Values

Task RtpEvaluatorTask RtpEvaluator

WpMultiRepServerWpMultiRepServerWpMultiRepServerMultiRepWorkerMultiRepWorkerMultiRepWorker MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator

Send Task: Send Task: ResultResult
Completed andCompleted and
Validated TaskValidated Task

Return Task: Return Task: ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops

Request Task: Request Task: ResultResult

Send Effectiveness ValuesSend Effectiveness Values

Task RtpEvaluatorTask RtpEvaluator

Figure 15: Control Flow for MR_PlanEvaluator

3.1.8 Real-Time Picture Evaluator
The Real-Time Picture (RTP) Evaluator component, MR_RTP_Evaluator, is responsible for
comparing the state of the saved faster-than-real-time and real-time simulations with the real-
time picture. It is important that replications projecting into the future match reality at the time of
the real-time update. Replications that noticeably diverge from the real-time picture are
automatically pruned, re-tasked by the server, and initialized to match the current state. The RTP
evaluator launches an evaluation program that performs the actual analysis by applying a
weighting function that ultimately generates a relative effectiveness value. The server compares
this value with a predefined threshold to determine whether the simulation is pruned.
The MR_RTP_Evaluator is a Worker that evaluates the results of the JSAF replication
executions against the updated real-time picture. The MR_RTP_Evaluator takes each of the
result spreadsheets and evaluates them against the new real-time information. If the evaluation
process deems that certain replications are no longer valid when compared to the RTP, then those
replications are pruned and new replications will be initiated in their place.

A sequence diagram for the operation of the MR_RTP_Evaluator with respect to other elements
of the MRF is shown in Figure 16 and its corresponding state diagram is shown in Figure 17. In
these diagrams, the MR_RTP_Evaluator receives both the RTP and Results from the
MR_Server. In addition, the control flow provides functionality for looping through RTP
evaluation results, and pruning replications that exceed some (user-specified) predefined
threshold. This control flow also assumes that the MR_RTP_Evaluator has connected to the
server.

 27

WpMultiRepServerWpMultiRepServerWpMultiRepServer

Send Task: Send Task: RtpRtp

MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluator

Send Task: Send Task: ResultResult
CompletesCompletes
Plan EvaluationPlan Evaluation

Return Task: Return Task: RtpRtp & & ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops
Request Task: Request Task: RtpRtp & & ResultResult

PruneRep() TASKPruneRep() TASK

MultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker WpMultiRepServerWpMultiRepServerWpMultiRepServer

Send Task: Send Task: RtpRtp

MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluator

Send Task: Send Task: ResultResult
CompletesCompletes
Plan EvaluationPlan Evaluation

Return Task: Return Task: RtpRtp & & ResultResult

Creates SharedCreates Shared
MemoryMemory

LaunchLaunch
EvalEval

LoopsLoops
Request Task: Request Task: RtpRtp & & ResultResult

PruneRep() TASKPruneRep() TASK

MultiRepRtTaskerMultiRepRtTaskerMultiRepRtTasker

Figure 16: Control Flow for RTP Evaluator

MR_RtpTaskerMR_RtpTaskerMR_RtpTasker

RTP arrivesRTP arrives ProcessRtp()ProcessRtp()

RTP existsRTP existsMR_WorkerMR_WorkerMR_Worker

RTP does not existRTP does not exist
Result arrivesResult arrives

ProcessRtp()ProcessRtp()

MR_Evaluator_First_ConnectMR_Evaluator_First_ConnectMR_Evaluator_First_Connect

Available for TaskingAvailable for Tasking

RTP existsRTP existsMR_EvaluatorMR_EvaluatorMR_Evaluator

RTP does not existRTP does not exist
Request WorkRequest Work

ProcessRtp()ProcessRtp()

MR_RtpTaskerMR_RtpTaskerMR_RtpTasker

RTP arrivesRTP arrives ProcessRtp()ProcessRtp()

MR_RtpTaskerMR_RtpTaskerMR_RtpTasker

RTP arrivesRTP arrives ProcessRtp()ProcessRtp()

RTP existsRTP existsMR_WorkerMR_WorkerMR_Worker

RTP does not existRTP does not exist
Result arrivesResult arrives

ProcessRtp()ProcessRtp()RTP existsRTP existsMR_WorkerMR_WorkerMR_Worker

RTP does not existRTP does not exist
Result arrivesResult arrives

ProcessRtp()ProcessRtp()

MR_Evaluator_First_ConnectMR_Evaluator_First_ConnectMR_Evaluator_First_Connect

Available for TaskingAvailable for Tasking

MR_Evaluator_First_ConnectMR_Evaluator_First_ConnectMR_Evaluator_First_Connect

Available for TaskingAvailable for Tasking

RTP existsRTP existsMR_EvaluatorMR_EvaluatorMR_Evaluator

RTP does not existRTP does not exist
Request WorkRequest Work

ProcessRtp()ProcessRtp()RTP existsRTP existsMR_EvaluatorMR_EvaluatorMR_Evaluator

RTP does not existRTP does not exist
Request WorkRequest Work

ProcessRtp()ProcessRtp()

Figure 17: State Diagram for the RTP Evaluator

3.2 Overall Control Flow for Predictive Operations
Each of the preceding subsections has detailed the operation of the MRF for running predictive
analysis of plans while calibrating and evaluating the results with real-time-picture information
extracted from TBMCS. Sequence diagrams in these subsections have presented a localized view
of the flow of control between different components of the MRF system. A key element in
ranking plans and alternatives is the calculation of effectiveness metrics. The theory behind these
calculations is presented in Section 4.0. A comprehensive view of this control flow for predictive
operations is shown in Figure 18.

 28

ProcessRep() REQUESTProcessRep() REQUEST

ExecuteExecute
RepRep

MultiRepWorkerMultiRepWorkerMultiRepWorker

ProcessRep() RESPONSEProcessRep() RESPONSE

AdvanceRep() TASKAdvanceRep() TASK

IF rep exists,IF rep exists,
advance Rep Timeadvance Rep TimeAdvanceRep() RESPONSEAdvanceRep() RESPONSE

Is RepIs Rep
Valid?*Valid?*

PlanEvaluator() TASKPlanEvaluator() TASK PlanEvaluator() RESPONSEPlanEvaluator() RESPONSE
Execute PlanExecute Plan
EvaluatorEvaluatorUpdatePlanEvaluation()UpdatePlanEvaluation()

PruneRep() TASKPruneRep() TASK

PruneRep() RESPONSEPruneRep() RESPONSE
Was RepWas Rep
Pruned?Pruned?

RtpEvaluator() TASKRtpEvaluator() TASK

NoNo YesYes

PlanEvaluator() REQUESTPlanEvaluator() REQUEST

ProcessRep() TASKProcessRep() TASK

IF pruned,IF pruned,
insert new Repinsert new Rep

NoNoYesYes

RtpEvaluator() TASKRtpEvaluator() TASK

RtpEvaluator() REQUESTRtpEvaluator() REQUEST

RtpEvaluator() RESPONSERtpEvaluator() RESPONSE

EvaluateEvaluate
RTPRTP PruneRep() TASKPruneRep() TASK

MultiRepTaskerMultiRepTaskerMultiRepTasker

PruneRep() RESPONSEPruneRep() RESPONSE

MultiRepRtpTaskerMultiRepRtpTaskerMultiRepRtpTasker

WpMultiRepServerWpMultiRepServerWpMultiRepServer

MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluator

MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator

*Since we allow
reps to advance
before being
evaluated, It is
possible that
the next
iteration of a rep
is IN
PROGRESS
when a rep is
pruned

ProcessRep() REQUESTProcessRep() REQUEST

ExecuteExecute
RepRep

MultiRepWorkerMultiRepWorkerMultiRepWorker

ProcessRep() RESPONSEProcessRep() RESPONSE

AdvanceRep() TASKAdvanceRep() TASK

IF rep exists,IF rep exists,
advance Rep Timeadvance Rep TimeAdvanceRep() RESPONSEAdvanceRep() RESPONSE

Is RepIs Rep
Valid?*Valid?*

PlanEvaluator() TASKPlanEvaluator() TASK PlanEvaluator() RESPONSEPlanEvaluator() RESPONSE
Execute PlanExecute Plan
EvaluatorEvaluatorUpdatePlanEvaluation()UpdatePlanEvaluation()

PruneRep() TASKPruneRep() TASK

PruneRep() RESPONSEPruneRep() RESPONSE
Was RepWas Rep
Pruned?Pruned?

RtpEvaluator() TASKRtpEvaluator() TASK

NoNo YesYes

PlanEvaluator() REQUESTPlanEvaluator() REQUEST

ProcessRep() TASKProcessRep() TASK

IF pruned,IF pruned,
insert new Repinsert new Rep

NoNoYesYes

RtpEvaluator() TASKRtpEvaluator() TASK

RtpEvaluator() REQUESTRtpEvaluator() REQUEST

RtpEvaluator() RESPONSERtpEvaluator() RESPONSE

EvaluateEvaluate
RTPRTP PruneRep() TASKPruneRep() TASK

MultiRepTaskerMultiRepTaskerMultiRepTasker

PruneRep() RESPONSEPruneRep() RESPONSE

MultiRepRtpTaskerMultiRepRtpTaskerMultiRepRtpTasker

WpMultiRepServerWpMultiRepServerWpMultiRepServer

MultiRepRtpEvaluatorMultiRepRtpEvaluatorMultiRepRtpEvaluator

MultiRepPlanEvaluatorMultiRepPlanEvaluatorMultiRepPlanEvaluator

*Since we allow
reps to advance
before being
evaluated, It is
possible that
the next
iteration of a rep
is IN
PROGRESS
when a rep is
pruned

Figure 18: Control Flow for Predictive Operations

 29

4.0 Effectiveness Calculations
This section describes the two unique measures of effectiveness, Raw Effectiveness and Relative
Effectiveness, used to rank plans and identify candidates for pruning.

4.1 Raw Effectiveness Defined
Raw effectiveness is a value between zero and one indicating the overall effectiveness of the
plan. A value of one indicates complete success (i.e., all Red entities/assets destroyed and no
Blue entities/assets destroyed). A value of zero indicates complete failure (i.e., all Blue
entities/assets destroyed and no Red entities/assets destroyed). The raw effectiveness is not an
indication of how accurately the plan has been followed; rather it is a measure of the overall
outcome.

4.1.1 Calculating Raw Effectiveness
The intrinsic value for each entity (or asset) in the battle can be defined at a given point in time.
Normally, the intrinsic value does not change for each entity. However, it is possible for new
entities to enter the battle, or for new information to be provided indicating changes to the
intrinsic value of an entity.

I i
B (t) = Intrinsic value for blue entityi at time t

I i
R (t) = Intrinsic value for red entityi at time t

The actual value for each entity (or asset) in the battle can be defined at a given point in time.
The actual value ranges from zero (meaning that the entity/asset has been destroyed) to the
intrinsic value (meaning that the entity/asset has perfect health, has not diminished its capacity to
engage in battle, and has a full fuel supply).

Ai
B (t) = Actual value for blue entityi at time t

Ai
R (t) = Actual value for red entityi at time t

The total intrinsic values for Blue and Red entities/assets in the battle can be specified at a given
point in time:

I B (t) = I i
B

i

NB

∑ (t)

I R (t) = I i
R

i

N R

∑ (t)

The total actual values for Blue and Red entities/assets in the battle can be specified at a given
point in time:

AB (t) = Ai
B

i

NB

∑ (t)

AR (t) = Ai
R

i

N R

∑ (t)

Utilizing these equations, the Raw Effectiveness can be calculated by the following equation:

 30

RawEffectiveness(t) =
AB (t) + I R (t) − AR (t)[]

I B (t) + I R (t)

A successful plan normally results in the raw effectiveness value increasing over time. However,
it is possible for a plan to accomplish its mission, even though the raw effectiveness decreases.
This would happen if the cost of completing a mission turns out to be higher than the overall
gain.

Because of the uncertain nature of predicting the outcome of plans, it is important to execute
multiple replications and statistically analyze the results. The mean and standard deviation are
provided for each time step in the simulation. These mean values and their standard deviations
can be fitted using χ 2 analysis to obtain time-based curves that can provide trend analysis.

Thus, the raw effectiveness can be thought of as the overall measure of effectiveness of the plan.
This is different from the relative effectiveness, which is a measure of the plan performance (i.e.,
how accurately the plan was followed).

4.2 Relative Effectiveness Defined
The relative effectiveness is a measure of the plan performance, indicating how accurately the
plan was followed. Two types of relative effectiveness are computed: (1) simulated projections
in time vs. plan expectations from the ATO, and (2) simulated projections at the current time
with respect to the real-time picture.

In the first case, the relative effectiveness provides a prediction of the uncertainty of the plan
performance over time. It predicts when the plan might fall apart, and when new planning may
be required. It provides insight on the chaos that may ensue during the fog of war. Multiple
replications per plan are required to determine the anticipated outcome. Some replications may
deviate from the plan due to statistical variances or uncertainties in the planned scenario, while
other replications produce the anticipated outcome. A statistical analysis of the relative
effectiveness is used to help characterize the plan dispersion.

In the second case, the relative effectiveness allows simulation replications that began their
execution in the past to verify that they match the current real-time picture. The relative
effectiveness for this second case is used to prune those replications that do not match the real
world picture. New simulation replications are restarted to replace those replications that were
pruned using the real-time picture entity states to initialize the simulation.

4.2.1 Calculating Relative Effectiveness
The state of each entity/asset in the plan at any point in time can be defined as an abstract vector
of values. These state values can be projected forward in time either from simulation or from the
actual planned expectations directly from the Air Tasking Order (ATO). State values can also be
provided through the real-time picture with live data feeds that are provided into the system.
These three kinds of state vectors are defined below.

The simulation projects the state vectors for each entity/asset in the scenario.

r
X i

B (t) = Simulated state vector of blue entityi at time t

r
X i

R (t) = Simulated state vector of red entityi at time t

 31

The expected state vectors for each entity/asset in the plan is projected from the ATO to predict
the outcome of the plan.

r
Y i

B (t) = Projected state vector of blue entityi at time t

r
Y i

R (t) = Projected state vector of red entityi at time t

The real-time picture state vector is defined as follows.

r
Z i

B (t) = Observed state vector of blue entityi at current time t

r
Z i

R (t) = Observed state vector of red entityi at current time t

These vectors can be used to calculate the two cases for calculating the Relative Effectiveness
for simulated projections and through the use of the real-time picture. The calculation of Relative
Effectiveness for these two cases is shown below:

Case 1 – Simulated projections:

RelativeEffectiveness(t) = 1−

1
I B + I R

⎛
⎝
⎜

⎞
⎠
⎟

r
X i (t) −

r
Y i (t)

i

N
∑

Case 2 – Real-time picture:

RelativeEffectiveness(t) = 1−

1
I B + I R

⎛
⎝
⎜

⎞
⎠
⎟

r
X i (t) −

r
Z i (t)

i

N
∑

Note that for each of these cases, the magnitude of the vector difference is weighted for each
vector value. The overall magnitude for each term in the sum is normalized and lies between
zero and I i (t) .

A score of one would indicate that the plan is being executed as expected. A score of zero would
indicate complete chaos, meaning that the plan has fallen apart and is no longer valid. For Case
2, this would indicate that the plan does not agree with reality and should be pruned/restarted.

 32

5.0 Operating the MRF
The MRF GUI is shown in Figure 19. The GUI provides a graphical interactive interface to the
MRF that allows Commanders to task the execution of simulation plans and replications, view
the progress and performance of the plans, and prune ineffective plans. The graph at the bottom
of the GUI plots the raw and relative effectiveness of each plan over time. These metrics are used
to gauge the effectiveness and performance of the Commander’s plan.

Figure 19: The MRF GUI

Plans and replications are initiated in the MRF by issuing a tasking script from the GUI. As
shown in Figure 20, a file selector tool allows the Commander to select a tasking script to kick
off the process. The GUI will be expanded to allow the Commander to start plans and
replications via menus instead of scripts.

After the script has been selected, the MRF takes control by sending the task to available
workers, as shown in Figure 21.

 33

Figure 20: Selecting and Issuing a Tasking Script

Figure 21: GUI kicking off a JSAF Replication

After the simulation time segment is complete, the MRF automatically performs the plan
evaluation and real-time picture evaluation, if the real-time data update was received. Figure 22
shows the plan evaluation results of a replication.

Because of the uncertain nature of predicting the outcome of plans, it is important to execute
multiple replications of a plan and statistically analyze the results. The MRF calculates the mean
and standard deviation of the effectiveness values for each time step in the simulation. These
mean values and their standard deviations can be fitted using χ2 analysis to obtain time-based
curves that provide trend analysis. The χ2 analysis is used to compare both the simulated and
observed results with the expected results of the plan.

 34

Figure 22: Plan Evaluation Results

 35

6.0 Roadmap for Operating DSAP on the Global
Information Grid

One of the overarching goals of this effort is to extend the DSAP Infrastructure to support
Network Centric Operations and Warfare (NCOW). To address this goal, the DSAP
Infrastructure will be enhanced to work with Network Centric Enterprise Services (NCES) in a
Service Oriented Architecture (SOA) in order to support applications utilizing the Global
Information Grid (GIG). A starting point for ensuring that DSAP supports the GIG will be to
ensure that elements of the infrastructure provide a publish/subscribe capability. This
publish/subscribe capability enables processing nodes to (1) publish data or information, (2)
subscribe to published data or information, and (3) support query on demand operations for
posted data. The operation of the DSAP infrastructure in this context is described as follows and
is depicted in Figure 23.

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Data
Services

Transformation
Services

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Data
Services

Transformation
Services

Security
Services

Service
Registries

Messaging
Services

Messaging
Services

Data
Services

Data
Services

Transformation
Services

Publish (results)
Subscribe (Plan and
Intelligence Data)

Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Service Consumer

Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Service Consumer

Intelligence
DB

Publish (plans)
Subscribe (results)

ATO
DB

Plan
DB

DSAP/MR
F

Enterprise
Services

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Data
Services

Transformation
Services

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Data
Services

Transformation
Services

Security
Services

Service
Registries

Messaging
Services

Messaging
Services

Data
Services

Data
Services

Transformation
Services

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Data
Services

Transformation
Services

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Messaging
Services

Data
Services

Data
Services

Transformation
Services

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Messaging
Services

Data
Services

Data
Services

Transformation
Services

Security
Services

Service
Registries

Messaging
Services

Messaging
Services

Data
Services

Data
Services

Transformation
Services

Publish (results)
Subscribe (Plan and
Intelligence Data)

Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Service Consumer

Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Service Consumer

Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Service Consumer

Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Service Consumer

Intelligence
DB

Publish (plans)
Subscribe (results)

ATO
DB

Plan
DB

DSAP/MR
F

Enterprise
Services

Figure 23: Enhancing DSAP For Use On A Service-Oriented

The underlying communications infrastructure of the DSAP framework is currently being
augmented with publish/subscribe functionality. While providing these underlying mechanisms
for net-centric operations are needed, much work must be performed to define the data and
services that the DSAP Infrastructure will provide to the GIG community.

For example, in their paper on M&S in the GIG environment presented at the IITSEC
Conference in 2004, Numrich, Hieb, and Tolk present a view for supporting NCOW in a GIG
environment. Among the elements discussed is a value chain based around the concepts of Data
Quality, Information Quality, Knowledge Quality, and Awareness Quality. The DSAP
Infrastructure can be viewed as a tool for supporting NCOW because it provides measures to
support Data Quality (through connections with databases), Information Quality (through
connections with real-time feeds), Knowledge Quality (through modeling and simulation using
predicted simulation, and Awareness Quality (through the use of its real-time simulation element

 36

as a state estimator). While the DSAP Infrastructure matches up as a support tool for the GIG,
support for a web services paradigm is needed. This support is discussed below.

6.1 Web Services
Web services are discrete web-based applications that interact dynamically with other web
services. According to Numrich, Hieb, and Tolk four basic definitions are provided and must be
met to ensure that a technology or tool can play in a web-service environment. These definitions
include:

• Structuring and describing the information to be exchanged

• Specifying the web service

• Accessing and communicating with the web service

• Registering and locating web services

These are described in more detail below.

6.1.1 Structuring and Describing the Information
The first step in defining the necessary data structure and services to make DSAP “GIG-ready”
involves structuring and describing the information that will be passed between elements of the
DSAP system. This includes defining the structure and type of data necessary to initialize
scenarios, describe plans, identify plan objectives and plan priorities, encapsulate plan and
replication results, provide plan evaluation information, and extract real-time information
between the different services provided by the DSAP Infrastructure. A major emphasis in this
area is utilizing a format that can (1) be understood by Commanders and their staff at Air
Operations Centers, and (2) interact with tools utilized by Commanders and their staff at Air
Operations Centers. The primary mechanism that will be used for describing information in
DSAP is the Extensible Markup Language (XML). XML provides the description of data to be
exchanged as well its storage and transmission formats. A key facet of XML is that it allows for
the definition of schemas that can be used to define supported data types, content, and structure.

With this in mind, several languages and data models are being examined for use in supporting
DSAP in a GIG environment. These include: Military Scenario Description Language (MSDL),
Battle Management Language (BML), and the Command and Control Information Exchange
Data Model (C2IEDM). Each of these models/languages is described below, while outlining
their potential use in the DSAP Infrastructure.

6.1.1.1 Military Scenario Description Language (MSDL)
Military Scenario Description Language (MSDL) is a language used to initialize and load
scenarios in a simulation environment through the use of an XML based data interchange format.
This format enables Command and Control (C2) planning applications to interchange the
military portions of scenarios with simulations and other applications. MSDL targets the
initialization of simulations and C2 systems with initial state and planned actions.

When implementation in the DSAP Infrastructure is considered, MSDL can be used to define the
initial simulation scenarios and initial plans and alternatives that the simulation elements will
execute. MSDL can be used to define these scenarios from real-time C4I intelligence data, or to
pull representative scenarios from a scenario databases. Use of MSDL will enable DSAP users to

 37

utilize any MSDL-based scenario, or provide scenario information in a standard format to other
users on the GIG.

6.1.1.2 Battle Management Language (BML)
The Battle Management Language is a vocabulary or lexicon used by simulation users and
developers to specify how to plan and automate military functions in support of Battle
Management activities. BML provides a data format for describing military behavior that is
derived from military doctrine. The resulting description is a standard that can be passed from
human to machine, or machine to machine. BML can be used to (1) describe Command and
Control forces and equipment conducting military operations, and (2) provide for situational
awareness and a shared common operational picture.

Currently, the DSAP Infrastructure sends plan information, along with objectives and priorities
throughout the infrastructure using messages formatted as comma-delimited spreadsheets. These
messages are very difficult to decipher and do not adhere to any standard lexicon, making their
use by Commanders and their staff at Air Operations Centers very difficult. This effort can
utilize BML in support of the DSAP Infrastructure to address these deficiencies by specifying the
plans (COAs) and alternatives that will be executed by both the predictive simulation component
and the simulation-based state estimator. BML can also be used to specify plan objectives and
priorities. These descriptions are derived from military doctrine and will have much greater use
when supporting activities at Air Operations Centers.

6.1.1.3 Command and Control Information Exchange Data Model (C2IEDM)
The Command and Control Information Exchange Data Model (C2IEDM) is an information
exchange and data management model developed by NATO to specify the structure of
information passed between Command and Control Information Systems (C2IS). The C2IEDM
preserves the meaning and relationships of information to be exchanged between C2IS at the
Conceptual, Logical, and Physical levels.

The DSAP Infrastructure can use the C2IEDM in conjunction with MSDL or BML to specify the
underlying relationships that define its entities and actions for its simulation scenarios. The
C2IEDM can be used for data interchange at both initialization and in extracting and posting
intermediate and final results.

6.1.2 Specifying the Web Services
The second element defined for DSAP will involve specifying and describing the types of web
services present in DSAP. The types of web services can be derived directly from elements of
the DSAP framework and represent functions such as Worker/Real-time Simulation,
Worker/Predictive Simulation, Worker/Evaluator, Worker/Real-time Picture Evaluator,
Tasker/Console, Tasker/TBMCS or Real-time Picture. Each service will be described as the type
of operation it will perform and the type of data it will handle and return.

6.1.3 Accessing and Communicating with the Web Service
The third element to be defined for the DSAP Infrastructure will be defining the means to access
and communicate with its resulting web services. SOAP (Simple Object Access Protocol) is the
standard used by the community to define simple one-way mappings for requesting and sending

 38

information. A goal of this effort will be to extrapolate on the current sequence diagrams to
define the access and communication sequence required by “web-service” DSAP.

6.1.4 Registration of Web Services
The final element for providing a “web-service” DSAP will be posting and registering the
services provided by each service and describing the message size and structure required to
satisfy that web service. For each of the services described in 6.1.2, descriptions of the services
must be posted and registered.

6.2 Advantages To Using DSAP In A SOA
The preceding subsection has provided a high level overview for enhancing DSAP to play in a
SOA. There are many advantages to providing this capability including (1) better support for
real-time picture information, (2) access to additional COAs and plans, (3) better proliferation of
results to all corners of the GIG, (4) integration with other simulation elements, and (5) improved
support for training or live exercises. Each of these is discussed briefly below.

6.2.1 Support for Real-time Picture Calibration
Currently the DSAP Infrastructure calibrates with the real-time picture by connecting to TBMCS
(which can be provided through GCCS). The connection is made through JDBC at the
MR_TBMCS_Tasker. Currently, real-time picture updates are provided through three methods
(1) polling TBMCS databases to see when updates are made, (2) pulling information from the
TBMCS databases at some pre-determined “update interval”, and (3) subscribing to TBMCS
updates. As services currently provided via TBMCS evolve and are subsequently provided as
web services in a SOA architecture, TBMCS will solely rely on the DSAP publish/subscribe
mechanism to retrieve timely updates that it has subscribed to. This capability can be used to
select and filter on specific fields from operations and intelligence databases. The prototype
allows information to be pulled from the AODB to provide additional Air Tasking Orders
(ATOs), and from the MIDB in order to obtain updated Red Force target information. A goal of
this effort, however, will be to extend the real-time update capability of the DSAP framework to
handle real-time data feeds by defining and handling the message structure provided by these
services. This capability will allow us to utilize more universal information and take advantage
of information present across the GIG.

RT JSAFRT JSAFRT JSAF

TBMCSTBMCSTBMCS Live DataLive DataLive Data JTIDSJTIDSJTIDS SATCOMSATCOMSATCOM TADWTADWTADW

RT JSAFRT JSAFRT JSAF

TBMCSTBMCSTBMCS Live DataLive DataLive Data JTIDSJTIDSJTIDS SATCOMSATCOMSATCOM TADWTADWTADW

Figure 24: Using Live Data Feeds To Enhance State Estimation

An example of this can be illustrated in Figure 24. The DSAP prototype pulls information from
the AODB and MIDB. The information provided from these databases, however, only serves to
calibrate the real-time state estimation simulation in terms of Red Force targets and Blue Force
ATOs. A key component in evaluating the operational picture includes Blue Force position and

 39

targeting information, which may dynamically change as missions unfold to address Time
Critical Targets, Time Sensitive Targets, and other Targets of Opportunity. To understand the
effects of dynamic re-targeting and re-tasking of assets and resources on the battlefield, the
DSAP prototype must calibrate itself with available data feeds such as JTIDS, SATCOM links,
Link-16, etc. A future goal of this effort will be to extend the DSAP’s capability to take
advantage of both these and similar resources available across the GIG.

6.2.2 Support for Storing and Assessing Alternate COAs
A second key area where DSAP must consider the “artifacts” of playing in a GIG environment
involves support for storing and assessing alternate COAs. Currently the DSAP Infrastructure
provides a mechanism at its MR_Manager for storing alternate COAs. As the analysis and re-
planning process evolves, ineffective COAs may be replaced by plans stored in the
MR_Manager’s database. To extend DSAP functionality to a SOA, enhancements will be made
to both define and support a message structure that will allow COA databases at both local and
remote locations to retrieve and contribute the latest plans. This feature will support
heterogeneous platforms and better enable system scalability.

6.2.3 Proliferation of Results
DSAP framework must also consider information it may wish to “push” or publish for users of
the GIG that may utilize those results for planning and analysis purposes. Currently, results
regarding the effectiveness measurements of each plan evaluated by the DSAP infrastructure are
stored in a database residing at the MR_Manager and set back to the user/analysis at both the
MR_Tasker terminal and console. In order to provide this information to other users, we can
define the message structure that will support a service that provides the results of the simulation
and evaluation executions through the DSAP infrastructure. This type of intermediate knowledge
may have uses beyond the current evaluation process.

6.2.4 Integration With Other Simulations for Analysis
The prototype detailed in this paper uses JSAF for analyzing its COAs. The DSAP infrastructure,
however, is not limited to JSAF for analysis. The MRF provides a very non-intrusive mechanism
that allows its workers to “fire-off” a JSAF replication. This mechanism can be applied to other
simulations such as the Force Structure Simulation (FSS) or the Joint Wargaming System
(JWARS) in order to provide COA assessment. A goal to a “web-service” DSAP capability may
be to make all simulations web services that can be interchangeably used to populate the DSAP
process. Steps in providing this capability would involve defining the structure for scenario
initialization data as well as results data.

 40

7.0 DSAP Usage and Future Work
As stated earlier, the DSAP Infrastructure can be used to support analysis, training, and
operations. In terms of Analysis, the DSAP environment can be used for Course of Action
Analysis and rapid mission rehearsal. The MRF’s Prediction capability can be used to analyze
COAs and potential alternatives by simulating those plans faster-than-real-time. Raw
effectiveness calculations can then be used to evaluate and rank each plan or replications of each
plan to determine its effectiveness at achieving its goals and objectives within its operating
context.

The DSAP Infrastructure can be used to support Training of Commanders and their staff through
human-in-the-loop simulation. In this context, the Commander can be trained using the real-time
simulation in the absence of the calibrated results. This training process utilizes the predictive
analysis of plans (using faster-than-real-time simulation) to provide the Commander and his staff
with feedback on the potential effectiveness of a plan and possible alternatives. The MRF can
allow the Commander to select a new plan, analyze a new alternative, or prune failed alternatives
based on feedback provided to him. This training process can be extended to live environments
by incorporating the real-time C4I aspects of the framework.

The DSAP Infrastructure can be used to support Operations in a number of ways. First, the
DSAP Infrastructure can be used to support the planning process. The Prediction capability can
be used to rapidly rehearse plans faster-than-real-time via simulation and provide measures of
plan effectiveness as input to plan generation tools. In this context, the DSAP Framework can
take the plan generation process from simply an optimization process that “covers” plan
objectives to a process that incorporates mission rehearsal for a more accurate optimization
process.

Second, the full DSAP capability is geared toward use at Air Operations Centers in an
operational environment. In this instance, the DSAP Infrastructure can take mission plans and
potential alternatives generated from Air Tasking Orders (ATOs) and use the Prediction
capability to (1) predict their effectiveness in the future while calibrating with the current real-
time picture, and (2) support Dynamic Situation Assessment via state estimation. In this context,
the DSAP Infrastructure can be used to evaluate and replace plans as the operational picture
evolves.

7.1 Future Work
To continue to build on successes of our DSAP work, RAM Laboratories is proposing to
continue to build on MRF functionality and to integrate and install a working prototype of the
DSAP Infrastructure in the laboratory at AFRL’s Rome Research Site. Specifically we propose
develop, implement, and integrate the real-time operationally focused simulation component of
DSAP in an operational setting to provide estimation of real-world state. In addition, we propose
to augment our existing predictive analysis capabilities and Graphical User Interfaces to facilitate
DSAP’s use in predicting the outcomes of plans and alternatives through “what-if” analysis.

 41

8.0 Bibliography
John R. Surdu. Connecting Simulation to the Mission Operational Environment. Ph.D. Thesis.
Texas A&M University. 2000

Alex F. Sisti. “Dynamic Situation Assessment and Prediction (DSAP)” Proceedings of SPIE,
Enabling Technologies for Simulation Science VII Vol.5091. 2003.

Dr. Paul Phister, Dr. Timothy Busch, and Igor Plonisch. “Joint Synthetic Battlespace:
Cornerstone for Predictive Battlespace Awareness.”

Reaper Jerome, Trevisani Dawn, and Alex Sisti. “Real-Time Decision Support System
(RTDSS)” Proceedings of the Western MultiConference. January, 2003.

McGraw Robert, Lammers Craig, and Steinman Jeff, 2004. “Software Framework in Support of
Dynamic Situation Assessment and Predictive Capabilities for JSB-RD”. In proceedings of the
SPIE - Enabling Technologies for Simulation Science VIII Conference.

McGraw Robert, Lammers Craig, and Trevisani Dawn, 2004. “Dynamic Situation Assessment
and Predictive Capabilities in Support of Operations”. In proceedings of the Fall Simulation
Interoperability Workshop, Orlando, FL. 2004.

McGraw Robert, Lammers Craig, Steinman Jeff, and Trevisani Dawn, 2005. “A DSAP
Infrastructure for the Global Information Grid's Modeling and Simulation Community of
Interest”. In proceedings of the Spring Simulation Interoperability Workshop, San Diego, CA.
2005.

Lammers Craig, McGraw Robert, and Trevisani Dawn, 2005. “Applying a Multireplication
Framework to Support Dynamic Situation Assessment and Predictive Capabilities”. In
proceedings of the SPIE - Enabling Technologies for Simulation Science IX, Orlando, FL. 2005.

Effects Based Operations. Available: http://www.afrlhorizons.com/Briefs/June01/IF00015.html

Theater Battle Management Core Systems (TBMCS). Available
http://jitc.fhu.disa.mil/tbmcs/tbmcs.htm.

Available http://www.mstp.quantico.usmc.mil/modssm2/InfoPapers/INFOPAPER%20JSAF.htm

Numrich, S.K., Hieb, M., and Tolk, A. “M&S in the GIG environment: An Expanded View of
Distributing Simulation” Presented at the Interservice Industry Training Simulation Education
Conference. Orlando, FL. 2004.

http://e-mapsys.com/C2IEDM-MIP_Overview_20Nov2003.pdf

]Steinman Jeff, 2002. “The Standard Simulation Architecture.” In proceedings of the 2002 SCS
Summer Computer Simulation Conference.

Douglas Schmidt. ACE+TAO. Available http://www.cs.wustl.edu/~schmidt/.

Bailey Chris, McGraw Robert, Steinman Jeff, and Wong Jennifer, 2001. "SPEEDES: A Brief
Overview" In Proceedings of SPIE, Enabling Technologies for Simulation Science V, Pages
190-201.

RAM Object Request Broker Programming Guide, Version 1.2, DRAFT.

 42

9.0 Acronyms
ACE Adaptive Communication Environment

AODB Air Operations Data Base

AFRL Air Force Research Laboratory

ATO Air Tasking Order

BML Battle Management Language

C2IEDM Command and Control Information Exchange Data Model

C2IS Command and Control Information Systems

C4I Command, Control, Communications, Computers, and
Intelligence

CCSE Common Component Simulation Engine

COA Course Of Action

CORBA Common Object Request Broker Architecture

DSAP Dynamic Situation Assessment and Predictive

FSS Force Structure Simulation

FTRT Faster Than Real Time

GCCS Global Command and Control System

GIG Global Information Grid

GUI Graphical User Interface

IFSB Information Systems Branch

IITSEC Interservice Industry Training Simulation Education
Conference

JDBC Java Data Base Connectivity

JDK Java Developer’s Kit

JSAF Joint Semi-Automated Forces

JTIDS Joint Tactical Information Delivery System

JWARS Joint WarGaming System

MIDB Modernized Integrated Data Base

MRF Multiple Replication Framework

MSDL Military Scenario Description Language

NATO North Atlantic Treaty Organization

NCES Network Center Enterprise Services

NCOW Network Centric Operations and Warfare

 43

ODBC Open Data Base Connectivity

ORB Object Request Broker

OS Operating System

POC Point of Contact

RT Real Time

RTP Real Time Picture

SATCOM Satellite Communications

SBIR Small Business Innovative Research

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPEEDES Synchronous Parallel Environment for Emulation and Discrete
Event Simulation

TAO The ACE ORB

TBMCS Theater Battle Management Core System

XML Extensible Markup Language

